Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Long interspersed nuclear element 1 (L1) parasitized most vertebrates and constitutes ∼20% of the human genome. It encodes ORF1p and ORF2p which form an L1-ribonucleoprotein (RNP) with their encoding transcript that is copied into genomic DNA (retrotransposition). ORF1p binds single-stranded nucleic acid (ssNA) and exhibits NA chaperone activity. All vertebrate ORF1ps contain a coiled coil (CC) domain and we previously showed that a CC-retrotransposition null mutant prevented formation of stably bound ORF1p complexes on ssNA. Here, we compared CC variants using our recently improved method that measures ORF1p binding to ssDNA at different forces. Bound proteins decrease ssDNA contour length and at low force, retrotransposition-competent ORF1ps (111p and m14p) exhibit two shortening phases: the first is rapid, coincident with ORF1p binding; the second is slower, consistent with formation of tightly compacted complexes by NA-bound ORF1p. In contrast, two retrotransposition-null CC variants (151p and m15p) did not attain the second tightly compacted state. The C-terminal half of the ORF1p trimer (not the CC) contains the residues that mediate NA-binding. Our demonstrating that the CC governs the ability of NA-bound retrotransposition-competent trimers to form tightly compacted complexes reveals the biochemical phenotype of these coiled coil mutants.more » « less
-
null (Ed.)Abstract Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB–ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.more » « less
An official website of the United States government
